1.0 **Pervious Pavement**

1.1 **Description**

Pervious Pavement is a best management practice that captures stormwater through voids in the pavement surface and filters water through an underlying aggregate reservoir. The reservoir typically allows water to infiltrate into the soil subgrade. The reservoir can also be designed to detain and release the water to a surface conveyance system if the underlying soil is not suitable for infiltration.

The purpose of Pervious Pavement is to control the quality and quantity of stormwater runoff while accommodating pedestrians, parking and possibly traffic. Pervious Pavement reduces runoff volumes and pollutants. Pervious Pavement is especially useful in existing urban development where the need to expand parking areas is hindered by lack of space needed for stormwater management. Pervious Pavement is also useful in new developments with limited space where land costs are high, and when nutrient reductions or green building certification programs are desired.

1.2 **Paving System Selection**

Pervious Pavement systems can be divided into four primary paving system types including Permeable Pavers, Pervious Concrete, Pervious Asphalt and Reinforced Grid Systems. See the proceeding sections for guidance with paving system selection.

1.2.1 **Permeable Pavers**

These include modular blocks of plastic, concrete or other material which have wide joints or openings that can be filled with soil, gravel, or grass. The most common form of Permeable Pavers are Permeable Interlocking Concrete Pavers (PICP). This may also include cast in place concrete grids or concrete grid pavers with openings that can be filled with permeable materials. The pavers are placed on a thin aggregate bedding layer over a thicker choker course and base beneath. The choker course and aggregate base provide uniform support, stormwater runoff storage and drainage.

Advantages: Well suited for plazas, patios, small parking areas and stalls, parking lots, parking lot roadways, and roadside parking stalls. Permeable Interlocking Concrete Pavers can be designed for larger loads and does not require curing time. As compared to Pervious Concrete and Pervious Asphalt, Permeable Pavers are easier and less costly to renovate if it becomes clogged. The Interlocking Concrete Pavement Institute offers a design guide, construction specifications, design software, and a Certified PICP Specialist Course for contractors.

Disadvantages: Permeable Interlocking Concrete Pavers often have the highest initial cost for materials and installation. Regular maintenance of Permeable Pavers may be higher than Pervious Concrete and Pervious Asphalt because of the need to refill the joints with aggregate after cleaning and the greater occurrence of weeds. Cast in place concrete grids or concrete grid pavers are intended for very limited vehicular traffic such as overflow parking, emergency access fire lanes, or median crossovers. Cast in place concrete grids or concrete grid pavers are not recommended for regularly used parking areas.

1.2.2 **Pervious Concrete**

Pervious Concrete is produced by reducing the fines in a conventional concrete mix with other materials to create interconnected void spaces for drainage. Pervious concrete has a coarser appearance than standard concrete although mixtures can be designed to provide a denser, smoother surface profile than traditional pervious concrete mixtures.
Advantages: While not as strong as conventional concrete pavement, Pervious Concrete provides adequate structural support, making it a good choice for travel lanes in parking lots in addition to parking areas, and roadside parking stalls. The National Ready Mixed Concrete Association provides a contractor training and certification program. The American Concrete Institute publishes a construction specification and a report which provides guidance on structural, hydrological and hydraulic system and component design in addition to mix proportioning and maintenance.

Disadvantages: Mixing and installation must be done correctly or Pervious Concrete will not function properly. Pervious Concrete can be subject to surface raveling and deicing salt degradation if not designed and constructed properly. Restoring surface permeability after a significant loss of initial permeability may be difficult without removing and replacing the entire surface course for the affected area.

1.2.3 Pervious Asphalt

Pervious Asphalt is similar to conventional (impervious) asphalt except that less fine material is used in the mixture in order to provide drainage. Pervious Asphalt has a courser appearance than conventional asphalt.

Advantages: While not as strong as conventional asphalt pavement, Pervious Asphalt offers sufficient structural strength for parking lots and roadside parking stalls. The National Asphalt Pavement Association (NAPA) provides a Design, Construction and Maintenance Guide for Porous Asphalt titled Porous Asphalt Pavement for Stormwater Management.

Disadvantages: Mixing and installation must be done correctly or Pervious Asphalt will not function properly. The owner, contractor and designer must ensure that standard asphalt is not placed in lieu of Pervious Asphalt. Asphalt sealants or overlays that eliminate surface permeability cannot be used. Restoring surface permeability after a significant loss of initial permeability may be difficult without removing and installing a portion of the surface course.

1.2.4 Reinforced Grid Systems

Reinforced Grid Systems, often referred to as geocells, consist of flexible plastic or metal interlocking units that infiltrate stormwater runoff through large openings filled with aggregate or topsoil and turf grass. Reinforced Grid Systems are well suited for emergency vehicle access over lawn areas or overflow parking. They are not appropriate for regularly used vehicular areas such as parking lots.

Advantages: Reduces expenses and maximizes lawn area.

Disadvantages: Reinforced Grid Systems have less structural strength than the other pavement course options, especially when used under saturated conditions. When covered with vegetation, it requires mowing, fertilization and watering. Overuse can kill the turf grass or create ruts from displaced aggregates.

1.3 Design Components

The Wearing Course or Surface Layer - provides strength for the designed traffic loads while maintaining adequate infiltration capacity for stormwater runoff. This course may be cast-in place concrete, asphalt, concrete and plastic pavers, and plastic or metal grid systems. These courses generally have very high initial infiltration rates. Ensure that clogging rates are accounted for in the system design. While this layer allows for the infiltration of storm flows and provides some water quality benefits, the wearing course cannot be allowed to become saturated from excessive water volume stored in the aggregate base layer. For backup infiltration capacity, an unpaved stone edge hydraulically connected to the aggregate base or an overflow outlet is installed.

The Aggregate Base or Storage Bed - provides a stable base for the paver, a highly permeable layer for the infiltration of stormwater into the underlying soil and underdrain system, and a temporary reservoir for storage of stormwater runoff prior to exfiltration through the underlying soil and underdrain system. In concrete and asphalt systems this layer is typically composed of a larger aggregate with a smaller stone (leveling or choker course) between the wearing course and the larger stone base course. The choker course is needed to reduce rutting from vehicle traffic and to more evenly distribute the loading to the base
material. Designs in Greenville County require underdrains as many of the native soils do not allow for adequate infiltration. All installations are required to have an observation well installed at the furthest down slope area.

Ensure that the surrounding area is stabilized prior to installation. If the base course is being used for retention, the storage bed is excavated level to maximize infiltration across the entire area. The bed is sloped to provide positive drainage at the desired rate for the underdrain system. A non-woven filter fabric is installed along the bottom and sides of the excavation according to the manufacturer’s specifications. Overlap adjacent strips at least 24 inches and secure fabric 4 feet outside of the storage bed. The aggregate is installed in 6 inch lifts and compacted to 95% modified proctor.

Subgrade – Analyze the subgrade conditions by a qualified geotechnical engineer for load bearing given the anticipated soil moisture conditions and anticipated vehicle loading. A separation between the base course and the seasonal high water table of three feet is required.

1.3.1 General Design Requirements

The design of Pervious Pavement will depend on the application and location at each site. Locations where Pervious Pavement is not recommended include:

- Stormwater Hotspots, locations where concentrated pollutant spills are possible such as gas stations, and industrial chemical storage sites.
- Areas where maintenance is unlikely to be performed at appropriate intervals (residential and major roadways).
- In applications with no enforceable guidelines.
- Where heavy regular applications of sand are used for maintaining traction during winter.
- Areas with high seasonal groundwater or other conditions which create prolonged saturated conditions at or near the ground surface and within the pavement sections. Fill soils can become unstable when saturated.
- Locations where the estimated long term infiltration rate is less than 0.1 inch/hr.

1.3.2 Design Requirements

The use of Pervious Pavement is limited by slope conditions. Table 1 provides slope limitations for each BMP.

<table>
<thead>
<tr>
<th>BMP Type</th>
<th>Max. Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pervious Asphalt</td>
<td>5%</td>
</tr>
<tr>
<td>Pervious Concrete</td>
<td>6%</td>
</tr>
<tr>
<td>Permeable Pavers</td>
<td>10%</td>
</tr>
<tr>
<td>Grid Systems</td>
<td>6%</td>
</tr>
</tbody>
</table>

In order to ensure adequate infiltration, it is important to estimate the long-term infiltration rate of the soil underlying a Pervious Pavement application. For small installations (patios, walkways, and driveways on individual lots) no infiltration field tests are necessary. However, a soil grain size, texture analysis or soil pit excavation and infiltration tests may be prudent if highly variable soil conditions or seasonal high water tables are suspected. For large installations (parking lots, roadside parking stalls, and parking travel lanes) that include storage volume using base material below the surface, use the following methods to estimate the infiltration capacity of the underlying soil. Testing will be performed at the depth of the interface between the aggregate base/storage bed and the underlying subgrade, where infiltration into the soil will occur.

Method 1: USDA Soil Textural Classification (Rawls survey) every 200 feet of road or every 5,000 ft²
Method 2: ASTM D422 Gradation Testing at Full Scale Infiltration Facilities every 200 ft of road or 5,000 ft².

Method 3: Use small-scale infiltrometer tests every 200 feet of road or every 5,000 ft². These tests include the USEPA falling head or double ring infiltrometer tests (ASTM 3385-88). As these tests may not adequately measure variability of conditions in the test area they should be taken at several locations within the area of interest.

1.3.3 Pervious Asphalt Requirements

Table 2 – Pervious Asphalt Requirements

<table>
<thead>
<tr>
<th>Design Component</th>
<th>Design Requirements & Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Wearing Course or Surface Layer</td>
<td>The top course is typically 2 to 4 inches thick. Permeable asphalt has similar strength and flow properties as conventional asphalt. Total void space is approximately 15-20%. The content of the asphalt cement ranges from 5.5-6.0% by weight dry aggregate. An elastomeric polymer can be added to reduce drain down. Also hydrated lime may be added at a rate of 1.0% by weight of the total dry aggregate to mixes using granite stone to prevent separation. The asphalt system is installed toward the end of construction activities to minimize sediment problems. Erosion and introduction of sediment is strictly controlled during and after construction. Test panels are recommended to determine asphalt cement grade and content compatibility with aggregate. In order to prevent rising water in the underlying aggregate base to saturate the pavement, a positive overflow will be installed.</td>
</tr>
<tr>
<td>The Aggregate Base or Storage</td>
<td>The minimum depth for structural support of this layer is 6 inches. The maximum depth is determined by the below grade storage volume. Aggregate base depths of 18 to 36 inches are common depending on storage needs. The coarse aggregate layer is 2.5- to 0.5-inch uniformly graded crushed (angular) thoroughly washed stone (AASHTO No. 3). The choker course is 1 to 2 inches in depth and consists of 1.5-inch to 0.0937-inch (No. 8 sieve) uniformly graded crushed washed stone for final grading of the base course. In applications with larger slopes, underground baffles may be used to make more efficient use of the storage layer. If baffles are used, positive drainage to the underdrain system will be provided along the baffles. Before installing the storage bed, stabilize the surrounding area to prevent runoff and sediment from entering the storage bed. A non-woven filter fabric is installed on the subsoil according to the manufacturer’s specifications. Where the installation is adjacent to conventional paving surfaces, filter fabric is wrapped up the sides to the top of the base aggregate. Overlap adjacent strips of fabric at least 24 inches and secure 4 feet outside of the storage bed. Install the aggregate in maximum 8-inch lifts and lightly compact each lift. Install a 1- to 2-inch choker course evenly over the surface of the coarse aggregate layer. Filter fabric is folded over between the placement of the base and asphalt courses to protect installations from sediment inputs, and is trimmed when the site is fully stabilized.</td>
</tr>
<tr>
<td>Subgrade</td>
<td>After grading, ensure the existing subgrade is not compacted or subjected to excessive construction traffic. Immediately before base aggregate placement remove any accumulation of fine material from erosion with light equipment. Underdrains are required in Greenville County, as many of the native soils do not allow for adequate infiltration. Ensure the draw-down time for the base does not exceed 24-hours.</td>
</tr>
</tbody>
</table>
Table 3 – Pervious Concrete Requirements

<table>
<thead>
<tr>
<th>Design Component</th>
<th>Design Requirements & Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Wearing Course or Surface Layer</td>
<td>Typically 4 to 12 inches thick depending upon design loads. Permeable concrete is approximately 70-80% of the unit weight of conventional concrete and uses Portland cement type I or II conforming to ASTM C 150 or Type IP or IS conforming to ASTM C 595. The void space is 15-20% according to ASTM C 138 with a water cement ratio of 0.27-0.35, and an aggregate to cement ratio of 4:1 to 4.5:1. Admixtures including water reducing/retarding admixture (ASTM C 494 Type D) and hydration stabilizer (ASTM C 494 Type B), and fiber mesh may be used. Use potable water. Permeable concrete is similar to conventional concrete without the fine aggregate (sand component). Use the cement mix within 1 hour after water is introduced and within 90 minutes if an admixture is used and the temperature of the mix does not exceed 90° Fahrenheit. Base aggregate is wetted to improve the working time of the cement. A mechanical or manual screen can be used to level concrete at ½-inch above a form. The surface is covered with a 6-mil plastic and a static drum roller used for final compaction (roller should provide approx. 10 psi vertical force). Cover the Cement with plastic within 20 minutes and it remains covered for a minimum curing time of 7 days with no truck traffic for 10 days. Do not use high frequency vibrators as they can seal the surface of the concrete. Placement widths do not exceed 15 feet unless the contractor can demonstrate competence to install greater widths. Shrinkage associated with drying is less than that of conventional concrete. A conservative design can include control joints at 60-foot spacing cut to ¼ of the pavement thickness.</td>
</tr>
<tr>
<td>The Aggregate Base or Storage</td>
<td>The minimum depth for structural support of this layer is 6 inches. The maximum depth is determined by the below grade storage volume. Aggregate base depths of 18 to 36 inches are common depending on storage needs. The coarse aggregate layer is 2.5- to 0.5-inch uniformly graded crushed (angular) thoroughly washed stone (AASHTO No. 3). The choker course is 1 to 2 inches in depth and consists of 1.5-inch to 0.0937-inch (No. 8 sieve) uniformly graded crushed washed stone for final grading of the base course. In applications with larger slopes, underground baffles may be used to make more efficient use of the storage layer. If baffles are used, positive drainage to the underdrain system will be provided along the baffles.</td>
</tr>
</tbody>
</table>

The following tests are conducted to ensure proper performance:

i. Have the contractor place and cure two test panels covering a minimum of 225 ft² at the required thickness to demonstrate that specified unit weights and permeability can be achieved on site. The test panels have two cores taken from each panel in accordance with ASTM C 42 at least 7 days after placement.

ii. Untrimmed cores measured for thickness (ASTM C 42), within ¼ inch of specified thickness

iii. Cores trimmed and measured for unit weight (ASTM C 140), within 5 lbs/ft³ of design specification

iv. Void Structure tested (ASTM C 138) providing an infiltration rate greater than underlying soil

If the test panel meets the requirements, the panel can be left in place as part of the completed installation. Collect and sample material once per day to measure unit weight per ASTM C 172 and C 29.
<table>
<thead>
<tr>
<th>Subgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before installing the storage bed, the surrounding area is stabilized to prevent runoff and sediment from entering the storage bed. A non-woven filter fabric is installed on the subsoil according to the manufacturer’s specifications. Where the installation is adjacent to conventional paving surfaces, filter fabric is wrapped up the sides to the top of the base aggregate. Overlap adjacent strips of fabric at least 24 inches and secure 4 feet outside of the storage bed. Install the aggregate in maximum 8-inch lifts and lightly compact each lift. Install a 1- to 2-inch choker course evenly over the surface of the coarse aggregate layer. Filter fabric is folded over between the placement of the base and asphalt courses to protect installations from sediment inputs, and is trimmed when the site is fully stabilized.</td>
</tr>
<tr>
<td>After grading, do not compact the existing subgrade or subject it to excessive construction traffic. Immediately before base aggregate placement remove any accumulation of fine material from erosion with light equipment and scarify the soil to a minimum depth of 6 inches. The estimated long-term infiltration rate may be as low as 0.1 inches/hour. Install underdrains for all installations in Greenville County to prevent prolonged saturated conditions at or near the ground surface within the pavement section.</td>
</tr>
</tbody>
</table>
Permeable Paver Requirements

Table 4 – Permeable Paver Requirements

<table>
<thead>
<tr>
<th>Design Component</th>
<th>Design Requirements & Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Wearing Course or Surface Layer</td>
<td>Design specifications for these systems are generally provided by the manufacturer. These systems provide adequate infiltration and load bearing capacity for the application. Directing surface stormwater runoff to these systems from adjacent areas is not recommended without pretreatment.</td>
</tr>
<tr>
<td>The Aggregate Base or Storage</td>
<td>The minimum thickness for the aggregate base for aggregate or plastic pavers depends on anticipated loadings, soil type and stormwater storage requirements. Follow the Interlocking Concrete Paver Institute or the manufacturer’s provided guidelines for base thickness when available. Typical depths range from 6 to 22 inches though larger depths may be used if greater storage capacity is desired. The minimum base depth for pedestrian and bicycle applications is 6 inches. An ASTM No. 57 crushed aggregate or similar is recommended for the coarse layer while a 3-inch layer of ASTM No. 8 is recommended for the choker course.</td>
</tr>
<tr>
<td>Subgrade</td>
<td>Stabilize the surrounding area prior to installation of the aggregate base. If the base course is being used for retention, the storage bed is excavated level to maximize infiltration across the entire area. The bed is sloped to provide positive drainage at the desired rate for the underdrain. A non-woven filter fabric is installed along the bottom and sides of the excavation according to the manufacturer’s specifications. Where the installation is adjacent to conventional practices, the fabric is wrapped up the sides to the top of the base aggregate. Install the No. 57 aggregate in 4- to 6-inch lifts compacting with at least 4 passes of a 10-ton steel drum roller. Initial passes can be with vibration but the final two will be static. Install the choker course in a similar manner. Ensure both courses are moist to facilitate compaction.</td>
</tr>
</tbody>
</table>

Underdrains are required in Greenville County, as many of the native soils do not allow for adequate infiltration. Ensure the draw-down time for the base does not exceed 24-hours. For vehicle traffic areas, grade and compact the subgrade to 95% modified proctor density (ASTM D1557). For pedestrian areas, compact to 95% standard proctor density (ASTM D698).
Table 5 – Grid System Requirements

<table>
<thead>
<tr>
<th>Design Component</th>
<th>Design Requirements & Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Wearing Course or Surface Layer</td>
<td>Design specifications for these systems are generally provided by the manufacturer. These systems provide adequate infiltration and load bearing capacity for the application. Directing surface flows to these systems from adjacent areas is not recommended without pretreatment.</td>
</tr>
<tr>
<td>The Aggregate Base or Storage</td>
<td>The minimum thickness of this layer depends on anticipated loadings, underlying soil type and storage requirements. A typical minimum depth for driveways, alleys and parking lots is 4 to 6 inches. Increased depths can be used to increase storage capacity. The base aggregate is made up of a sandy gravel material typical for road base construction.</td>
</tr>
<tr>
<td>Subgrade</td>
<td>After grading, do not compact the existing subgrade or subject it to excessive construction traffic. Immediately before base aggregate placement remove any accumulation of fine material from erosion with light equipment. Underdrains are required in Greenville County, as many of the native soils do not allow for adequate infiltration. The draw-down time for the base will not exceed 24-hours.</td>
</tr>
</tbody>
</table>

1.4 General Construction Requirements

Pervious Pavement systems are specialty applications and are installed by contractors who have been trained and have experience with the type of pavement being used. If the installation contractor does not have adequate experience they will retain a qualified consultant to monitor the production, handling and placement of the porous pavement.

Avoid the introduction of sediment and runoff from surrounding unpaved areas where possible to prevent clogging of the pavement pore spaces. When this is unavoidable, use pre-treatment practices to allow for filtering or settling of sediments before the runoff reaches the porous pavement. Use filter fabric between the underlying soil and the base course of the pavement to prevent fines from migrating up into the base. Ensure that muddy vehicles do not drive on the base material or surface layer during construction. This is especially important for fine soils such as those found in Greenville County. Underdrains are required for all Pervious Pavement applications in Greenville County, as many of the native soils do not allow for adequate infiltration. These precautions enhance the operation and extend the operational life of the Pervious Pavement practice.

1.4.1 Site Preparation

Do not begin construction on Pervious Pavement until acceptable conditions are present. This includes the following items:

- Pervious surfaces are graded and do not discharge to the Pervious Pavement, except for instances when this is unavoidable, such as redevelopment projects.
- Impervious areas that drain to the Pervious Pavement are completed.
- Areas of the site adjacent to the Pervious Pavement are stabilized with vegetation, mulch, straw, seed, sod, fiber blankets or other appropriate cover in order to prevent erosion and possible contamination with sediments.
- Construction access to other portions of the site is established so that no construction traffic passes through the Pervious Pavement site during installation. Install barriers or fences as needed.
- The forecast calls for a window of dry weather to prevent excess compaction or smearing of the soil subgrade while it is exposed.
- All Pervious Pavement areas are clearly marked on the site.
1.4.2 Excavation and Subgrade Preparation

Clear and excavate the area for pavement and base courses while protecting and maintaining subgrade infiltration rates using following these steps:

- Excavate in dry subgrade conditions and avoid excavating immediately after storms without a sufficient drying period.
- Do not allow equipment to cross the pavement area after excavation has started.
- Operate excavation equipment from outside the pavement area or from unexcavated portions of the area using an excavation staging plan.
- Use equipment with tracks rather than tires to minimize soil compaction when equipment on the subgrade surface is unavoidable.
- Dig the final 9 to 12 inches by using the teeth of the excavator bucket to loosen soil and do not smear the subgrade soil surface. Final grading or smoothing of the subgrade will be done by hand if possible.
- Minimize the time between excavation and placement of the aggregate.
- Ensure the final subgrade slope does not exceed 0.5%. Inspect and verify the subgrade slope before proceeding.

After verifying the subgrade slope, scarify, rip or trench the soil subgrade surface (while the soil is dry) of infiltrating pavement systems to maintain the soil’s pre-disturbance infiltration rate. To scarify the pavement, use backhoe bucket’s teeth to rake the surface of the subgrade. To rip the subgrade, use a subsoil ripper to make parallel rips 6 to 9 inches deep spaced 3 feet apart along the length of the Pervious Pavement excavation. In silty or clayey soils, place clean coarse sand over the ripped surface to keep it free-flowing. The sand layer should be adequate to fill the rips.

An alternative to scarification and ripping is trenching. When trenching, install parallel trenches 12 inches wide by 12 inch deep along the length of the Pervious Pavement excavation. Excavate trenches every 6 feet (measured from center to center of each trench) and fill with ½ in. of clean course sand and 1½ in. of ASTM No. 67 aggregate. Ripped or trenched (uncompacted) soil subgrade can settle after aggregate base and surface course installation and compaction. Therefore, base compaction requires special attention to means and methods in the construction specifications and during construction inspection to minimize future settlement from ripped or trenched soil subgrades.

1.4.3 Subgrade Soil Test for Infiltration

Perform infiltration testing of the subgrade as specified in Section 1.3.2

1.4.4 Place Geotextiles and Geomembrane (If Applicable)

When using geotextiles or geomembranes, follow the manufacturer’s recommendations for the appropriate overlap between rolls of material. Secure geotextile or geomembrane so it will not move or wrinkle when placing aggregate.

1.4.5 Place Underdrain System, Catch Basins, and Observation Wells

Place underdrain system, catch basins, observation wells, and upturned elbows (if applicable) according to the design plans and verify that the elevations are correct.

Place a layer of No. 5 or No. 57 Aggregate 3-foot wide, and minimum of 3 inches deep on top of the nonwoven filter fabric in the locations where the underdrain will be located. Place the pipe underdrains on top of the underlying aggregate layer. Lay the underdrain pipe at a minimum 0.5% longitudinal slope. The perforated underdrain pipe may be connected to a stormwater conveyance system or a stabilized outlet. Portions of the underdrain system that are within 1-foot of the outlet structure will be solid pipe and not perforated. Cap the ends of underdrain pipes not terminating in an observation well.
Install observation wells/cleanouts made of non-perforated pipe vertically in the Pervious Pavement area as shown on the Plans. Ensure the cleanouts are located in areas that will not receive vehicle loading. Connect the wells/cleanouts to the perforated underdrain with the appropriate manufactured connections as shown on the Plans. Extend the wells/cleanouts to the elevation of the finished surface elevation of the Pervious Pavement practice, and cap with a screw cap.

Place No. 5 or No. 57 Aggregate around the pipe underdrain system to a minimum depth of 8 inches. Place nonwoven geotextile fabric at the boundary between the underdrain aggregate and the next Pervious Pavement layer (aggregate base) to prohibit the layers from mixing and to protect the perforated pipe underdrain.

1.4.6 Place Aggregate Base

Inspect all aggregates to insure they are clean, free of fines and conform to the plans and specifications. If aggregates delivered to the site cannot be immediately placed into the excavation, stockpile the aggregate on an impervious surface, geotextile, or on an impervious material to keep the aggregate free of sediment. If aggregate becomes contaminated with sediment, replace it with clean materials.

Before placing the aggregate base, remove any accumulation of sediments on the finished soil subgrade. Use light, tracked equipment. If the excavated subgrade surface is subjected to rainfall before placement of the aggregate base, excavate the resulting surface crust to at least an additional 2 inches of depth, raked or scarified to break up the crust. For sites with an impermeable liner or geotextiles, remove any accumulated sediments and check placement. Check slopes and elevations on the soil subgrade and the finished elevation of base (after compaction) or bedding materials to ensure they conform to the plans and specifications.

Spread all aggregate (not dump) by a front-end loader or from dump trucks depositing from near the edge of the excavated area or resting directly on deposited aggregate piles. Moistened and spread the washed stone without driving on the soil subgrade. Be careful not to damage underdrains and their fittings, catch basins, or observation wells during compaction. Follow compaction recommendations by the Pervious Pavement manufacturer or from industry guidelines. Be sure that corners, areas around utility structures and observation wells, and transition areas to other pavements are adequately compacted. Do not crush aggregates during compaction as this generates additional fines that may clog the soil subgrade.

1.4.7 Install Curb Restraints and Pavement Barriers

Install edge restraints and barriers between permeable and impervious pavement as shown on the Plans.

1.4.8 Install Surface Layer

The bedding and pavement course installation procedures depend on the Pervious Pavement surface. It is important to follow the specifications and manufacturer’s installation instructions. Install the bedding course in accordance with manufacturer or industry guide specifications. Improper bedding materials or installation can cause significant problems in the performance of the pavers and stone jointing materials between them.

If constructing a PICP pavement, use a contractor that holds a PICP Specialist Certificate from the Interlocking Concrete Pavement Institute. A list of contractors can be obtained from the Interlocking Concrete Pavement Institute.

1.5 Site Protection

It is preferable to have the Pervious Pavement installed at the end of the site construction timeline. If that is not possible, protect the Pervious Pavement per the Plans until project completion. The following are potential ways to protect Pervious Pavement:
• Route construction access through other portions of the site so that no construction traffic passes through or over the Pervious Pavement site.
• Install barriers or fences as needed.
• Cover Pervious Pavement with mats or plastic sheeting.
• Schedule street sweeping during and after construction to prevent sediment from accumulating on the pavement.

1.6 Maintenance

Pervious Pavement requires maintenance to provide long term functioning. A majority of the maintenance efforts involve efforts to prevent the surface from clogging. Consider long term maintenance when using Pervious Pavement.

Table 6 – Summary of Maintenance Requirements

<table>
<thead>
<tr>
<th>Permeable Paving System</th>
<th>Maintenance Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pervious Asphalt and Concrete</td>
<td>Clean surfaces using suction and sweeping, or high-pressure wash and suction. Hand held pressure washers are effective for cleaning void spaces and are appropriate for smaller areas. Smaller utility cuts can be repaired with conventional pavers is desired.</td>
</tr>
<tr>
<td>Permeable Pavers</td>
<td>Do not use washing. Only suction and sweeping is used when debris are dry. Pavers can be removed individually and replaced during utility work. Replace broken pavers to prevent structural instability.</td>
</tr>
<tr>
<td>Grid Systems</td>
<td>Remove and replace top course aggregate if clogged or contaminated using vacuum trucks or other techniques. Remove and replace broken grid segments where three or more adjacent grid cells are broken or damaged. Replenish the top course aggregate as needed.</td>
</tr>
</tbody>
</table>

1.6.1 Preventive Maintenance

The following list of preventive maintenance guidelines must be followed for Pervious Pavement.

• Clean the surface with portable blowers frequently, especially during the fall and spring to remove leaves and pollen before they irreversibly reduce the pavement’s surface permeability.
• Do not stockpile soil, sand, mulch or other materials on the Pervious Pavement.
• Do not wash vehicles parked on the Pervious Pavement.
• Place tarps to collect any spillage from soil, mulch, sand or other materials transported over the pavement.
• Cover stockpiles of soil near the Pervious Pavement.
• Bag grass clippings or direct them away from the Pervious Pavement.
• Do not blow materials onto the Pervious Pavement from adjacent areas.
• Do not apply sand during winter storms.
• Immediately remove any material deposited onto the Pervious Pavement during maintenance activities.
• Remove large materials by hand. Remove smaller organic material using a hand-held blower machine.
• Remove weeds growing in the joints of pavers by spraying them with a systemic herbicide such as glyphosate and then return within the week to pull them by hand.

1.6.2 Surface Cleaning

At a minimum, surface cleaning is required when runoff pools or puddles for extended periods longer than 24-hours. Owners are required to clean Pervious Concrete and Pervious Asphalt systems once annually, but more frequent cleanings are recommended, because surface infiltration is very difficult to restore after it has become clogged, and surface replacement is expensive.

The three main types of street cleaners are: mechanical, regenerative air and vacuum. Vacuum or regenerative air street sweepers are required because they are effective at cleaning the pore spaces in the pavement surface.

Mechanical sweepers are the most common. Mechanical sweepers come in various sizes for cleaning pedestrian or vehicular pavements, and generally do not use a vacuum. Mechanical sweepers employ brushes that initially move litter toward the machine center and lift trash onto a conveyor belt for temporary storage inside the machine. The brush bristles can penetrate some pavers, but not other types of Pervious Pavement. For other pavement types, mechanical sweepers may be used for removing trash, leaves, and other organic material, but the mechanical sweeper is not likely to be effective in removing sediment.

Regenerative air cleaners are the second most common. Regenerative air cleaners work by directing air at a high velocity within a confined box the rides across the pavement. The uplift from the high velocity effectively loosens dust and other fine particles on and near the pavement surface and lifts them into a hopper at the back of the truck. This equipment removes surface-deposited sediments from all pavement types. This equipment is recommended for regular preventive maintenance for Pervious Pavement.

Vacuum street cleaners are the least common and most expensive. Vacuum street cleaners apply a strong vacuum to a relatively narrow area that lifts particles both at and below the surface of the pavement. Vacuum sweepers have demonstrated the ability to suction 3 to 4 inches of gravel from PICP and have the ability to restore infiltration to some pavements that have been neglected.
1.7 IDEAL Modeling

The following table shows how to represent this BMP and BMPs similar to this one in the IDEAL model. It lists the parameters needed to successfully run the model and the parameters that affect the trapping efficiency of the BMP.

Table 7: IDEAL Modeling Guide

<table>
<thead>
<tr>
<th>Pervious Pavement Modeling in IDEAL</th>
<th>Porous Pavement</th>
</tr>
</thead>
<tbody>
<tr>
<td>What to Model as in IDEAL</td>
<td>Grass Paving</td>
</tr>
</tbody>
</table>

Specifications Needed for IDEAL

- Dimensions, slope, hydraulic conductivity, and porosity of the pavement. Porosity refers to the average void ratio of the surface layer, and is not used for infiltration calculations. Infiltration through this layer is solely dependent on the Hydraulic Conductivity. Both porosity and hydraulic conductivity are averages for the entire surface (i.e., if pavers are to be used, the porosity and hydraulic conductivity are area-weighted averages of the paver and gaps combined).
- Amount of regular maintenance expected to be performed on the pavement.
- Type of soils expected to be found on the pavement.
- Base course depth, hydraulic conductivity, median diameter, and porosity.
- Subgrade soil type and degree of saturation (fraction).
- If underdrain specifics are known:
 - Invert height of underdrain and horizontal spacing of laterals
 - If the underdrain has a flow restricting orifice: the orifice coefficient and diameter
- Surrounding landuses for sediment, nutrient, and bacteria EMCs.

Parameters that Drive Performance

<table>
<thead>
<tr>
<th>Feature</th>
<th>How Value Affects Sediment Trapping Efficiency (TE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underlying Soil Texture</td>
<td>Soils with higher infiltration capabilities increase TE.</td>
</tr>
<tr>
<td>Underdrain Invert (height above subgrade)</td>
<td>Increasing height of underdrain invert creates more storage that infiltrates between storms and therefore increases TE.</td>
</tr>
</tbody>
</table>

1.8 References

NCDENR Stormwater BMP Manual, Chapter 18 Permeable Pavement, Chapter Revised 10-16-12