NOT TO SCALE

Flow Bypass Specifications

<table>
<thead>
<tr>
<th>Type of Conveyance</th>
<th>Required Materials/Sizes/Dimensions</th>
</tr>
</thead>
</table>

Forebay Design Specifications

<table>
<thead>
<tr>
<th>Contributing Impervious Area (SQ.FT.)</th>
<th>Forebay Area (SQ.FT.)</th>
</tr>
</thead>
</table>

Treatment Train Design Specifications

<table>
<thead>
<tr>
<th>Design Flow (CFS)</th>
<th>Level Spreader Length (L) (LF)</th>
<th>Filter Strip Length (F) (LF)</th>
<th>Buffer Length (B) (LF)</th>
</tr>
</thead>
</table>

Notes:

- This schematic presents an example of a water quality treatment train utilizing a level spreader. It is not intended to be used for energy dissipation applications.
- Level spreaders may be used in other applications that require site-specific design.
- Treatment train utilizing level spreader and other BMPs must demonstrate compliance with Greenville County water quality standards by using ideal.
- This level spreader guidance is applicable for maximum design peak flow of 10 CFS.
- For design flows greater than 3 CFS, length of level spreader lip must be a minimum of 10 LF per CFS of design flow.
- For design flows less than or equal to 3 CFS, length of level spreader lip must be a minimum 30 LF.
- All flows in excess of level spreader design flow must be diverted through stable bypass flow conveyance.
- Forebay should be sized with minimum area of 0.5% of the impervious drainage area and have a depth range between 1 and 3 feet.
- Engineer must fill out boxes on this detail with necessary information and dimensions to describe treatment train and include on plans.
- Consult specification WQ-13 and detail WQ-13B for design requirements for level spreader swale, lip, and other features of level spreader.